Matière sèche, HCN et NPK des tubercules de manioc soumis à différentes doses du NPK
Mots-clés :
Manioc, fertilisation, matière sèche, cyanure d’hydrogène;, Cassava, fertilization, dry matter, hydrocyanideRésumé
Cette étude a évalué l'effet des fractions de doses d'engrais sur la teneur en matière sèche, en HCN (cyanure d’hydrogène) et azote, phosphore et potassium dans les racines de manioc. La teneur en matière sèche a été significativement élevée à Maboya (53,4 %) comparativement à Kirumba (48 %) et Bingo (40,6 %), alors que le taux de cyanure d’hydrogène a été plus élevé à Bingo (7,4 mg/100g de matière sèche) comparativement à Kirumba (5,8 mg/100g de matière sèche) et à Maboya (5,6 mg/100g de matière sèche). La teneur en N, P et K des racines de manioc a été la plus élevée à Kirumba (1,5 %, 2,3 mg/100g de matière sèche, 35 mg/100g de matière sèche; respectivement), suivi de Bingo (1,03 %, 1,97 mg/100g de matière sèche, 31,7 mg/100g de matière sèche ; respectivement) et Maboya (0,6 %, 1,97 mg/100g de matière sèche, 33,6 mg/100g de matière sèche ; respectivement). Les doses élevées d’azote (90 kg/ha) en présence des doses croissantes de potassium (40, 80 et 120 kg/ha) ont induit des teneurs en matière sèche et NPK les plus élevées dans les racines de manioc. Cependant, les faibles doses d’engrais azotés (40 et 60 kg/ha) en présence des doses croissantes de potassium (120 et 80 kg/ha) ont induit les plus fortes teneurs en cyanure d’hydrogène. Une dose de 90 kg/ha d’azote associée à 120 kg/ha de potassium serait un compromis idéal pour produire le manioc de faible teneur en cyanure d’hydrogène si le phosphore n’est pas limitant.
Abstract
The present study investigated the effect of fractional doses of fertilizers on the dry matter, HCN and NPK content of cassava roots. The dry matter content was significantly higher in Maboya (53.4 %) compared to Kirumba (48 %) and Bingo (40.6 %) while the hydrogen cyanide content was the highest in Bingo (7.4 mg/100g) compared to Kirumba (5.8 mg/100g) and Maboya (5.6 mg/100g dry matter). The N, P and K content of cassava roots were highest in Kirumba (1.5 %, 2.3 mg/100g dry matter, 35 mg/100g dry matter; respectively), followed by Bingo (1.03 %, 1.97 mg/100g dry matter, 31.7 mg/100g dry matter; respectively) and Maboya (0.6 %, 1.97 mg/100g dry matter, 33.6 mg/100g dry matter; respectively). High doses of nitrogen (90 kg/ha) in the presence of increasing doses of potassium (40, 80 and 120 kg/ha) induced highest dry matter and NPK content in cassava roots. However, low doses of nitrogenous fertilizers (40 and 60 kg/ha) in the presence of increasing doses of potassium (120 and 80 kg/ha) induced the highest HCN levels. The 90 kg/ha combined with 120 kg/ha of potassium would be an ideal tradeoff to produce cassava with low hydrogen cyanide if phosphorus is not limiting.
Téléchargements
Références
ADIELE, J. G., SCHUT, A. G. T., EZUI, K. S., PYPERS, P., & GILLER, K. E. (2021). Dynamics of N-P-K demand and uptake in cassava. Agronomy for Sustainable Development, 41(1), 1. https://doi.org/10.1007/s13593-020-00649-w
BATES, D., MÄCHLER, M., BOLKER, B., & WALKER, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
BIRATU, G. K., ELIAS, E., & NTAWURUHUNGA, P. (2022). Does the application of mineral and organic fertilizer affect cassava tuber quality? An evidence from Zambia. Journal of Agriculture and Food Research, 9, 100339. https://doi.org/10.1016/j.jafr.2022.100339
BORCARD, D., GILLET, F., & LEGENDRE, P. (2011). Numerical Ecology with R (1re éd.). Springer New York. https://doi.org/10.1007/978-1-4419-7976-6
BROWN, A. L., CAVAGNARO, T. R., GLEADOW, R., & MILLER, R. E. (2016). Interactive effects of temperature and drought on cassava growth and toxicity : Implications for food security? Global Change Biology, 22(10), 3461‑3473. https://doi.org/10.1111/gcb.13380
BYJU, G., & SUJA, G. (2020). Chapter Five—Mineral nutrition of cassava. In D. L. SPARKS (Éd.), Advances in Agronomy (Vol. 159, p. 169‑235). Academic Press. https://doi.org/10.1016/bs.agron.2019.08.005
CARDOSO, A. P., MIRIONE, E., ERNESTO, M., MASSAZA, F., CLIFF, J., REZAUL HAQUE, M., & BRADBURY, J. H. (2005). Processing of cassava roots to remove cyanogens. Journal of Food Composition and Analysis, 18(5), 451‑460. https://doi.org/10.1016/j.jfca.2004.04.002
CUVACA, I. B., EASH, N. S., ZIVANOVIC, S., LAMBERT, D. M., WALKER, F., & RUSTRICK, B. (2015). Cassava (manihot esculenta crantz) tuber quality as measured by starch and cyanide (hcn) affected by nitrogen, phosphorus, and potassium fertilizer rates. Journal of Agricultural Science, 7(6), p36. https://doi.org/10.5539/jas.v7n6p36
DE BRUIJN, G. H. (1973). The cyanogenic character of cassava (Manihot esculenta). In B. NESTEL & R. MACINTYRE (Éds.), Proceedings of an interdisciplinary workshop London, England, 29-30 January 1973 (IDRC-OLOe, p. 43‑48). IDRC-OLOe.
EL-SHARKAWY, M., & CADAVID, L. F. (2000). Genetic variation within cassava germplasm in response to potassium. Experimental Agriculture, 36, 323‑334. https://doi.org/10.1017/S0014479700003045
ESSERS, S. A. J. A., BOSVELD, M., VAN GRIFT, R. M. D., & VORAGEN, A. G. J. (1993). Studies on the quantification of specific cyanogens in cassava products and introduction of a new chromogen. Journal of the Science of Food and Agriculture, 63(3), 287‑296. https://doi.org/10.1002/jsfa.2740630305
FERMONT, A. M., VAN ASTEN, P. J. A., TITTONELL, P., VAN WIJK, M. T., & GILLER, K. E. (2009). Closing the cassava yield gap : An analysis from smallholder farms in East Africa. Field Crops Research, 112(1), 24‑36. https://doi.org/10.1016/j.fcr.2009.01.009
HOWELER, R. (2012). Dry matter accumulation and nutrient absorption and distribution during the growth cycle of cassava. In R. Howeler (Éd.), The cassava handbook : A reference manual based on the Asian Regional Cassava Training Course, held in Thailan (Centro Internacional de Agricultura Tropical (CIAT)). Centro Internacional de Agricultura Tropical (CIAT).
HOWELER, R. H., & CADAVID, L. F. (1983). Accumulation and distribution of dry matter and nutrients during a 12-month growth cycle of cassava. Field Crops Research, 7, 123‑139. https://doi.org/10.1016/0378-4290(83)90017-5
IITA. (1993). IITA Crop Improvement Division : Root and Tuber Improvement Program Archival Report (1989-1993); part 1. cassava breeding, cytogenetics and histology vol. 2. Germplasm enhancement [Report]. IITA. https://cgspace.cgiar.org/handle/10568/98789
IMAKUMBILI, M. L. E., SEMU, E., SEMOKA, J. M. R., & ABASS, A. (2020). Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots : An assessment of its possible use. PloS one, 15(2), e0228641. https://doi.org/10.1371/journal.pone.0228641
LUNDQUIST, P. (1992). Determination of cyanide and thiocyanate in humans (Linkoping University). Linköpings universitet. https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-25684
MENSAH, A. A. (2013). Comparative evaluation of physicochemical and functional properties of cassava flour from different fertilizer protocols [Thèse de Master]. Kwame Nkrumah University of Science and Technology.
NDUNG’U, J. N., WACHIRA, F. N., KINYUA, M. G., LELGUT, D. K., OKWARO, H., NJAU, P., & OBIERO, H. (2012). Influence of the environment on cassava quality traits in central rift Valley of Kenya. American Journal of Plant Sciences, 03(10), 1504‑1512. https://doi.org/10.4236/ajps.2012.310181
OKALEBO, R. J., GATHUA, K. W., & WOOMER, P. L. (2002). Laboratory methods of soil and plant analyses : A working manual (Second edition). TSBF-CIAT and SACRED Africa.
OKOTH, O. J., & YERMIYAHU, U. (2021). Improvement in cassava yield per area by fertilizer application. In A. FREDIANSYAH (Éd.), Cassava—Biology, Production, and Use. IntechOpen. https://doi.org/10.5772/intechopen.97366
OMONDI, J. O., & YERMIYAHU, U. (2021). Improvement in cassava yield per area by fertilizer application. In A. FREDIANSYAH (Éd.), Cassava : Biology, Production, and Use (InteechOpen). BoD – Books on Demand.
PADMAJA, G. (1995). Cyanide detoxification in cassava for food and feed use. Critical reviews in food science and nutrition, 35, 299‑339. https://doi.org/10.1080/10408399509527703
SANTISOPASRI, V., KUROTJANAWONG, K., CHOTINEERANAT, S., PIYACHOMKWAN, K., SRIROTH, K., & OATES, C. G. (2001). Impact of water stress on yield and quality of cassava starch. Industrial Crops and Products, 13(2), 115‑129. https://doi.org/10.1016/S0926-6690(00)00058-3
UKAOMA, A., & OGBONNAYA, I. (2013). Effect of inorganic mineral nutrition on tuber yield of cassava (Manihotesculentacrantz) on marginal ultisol of south easthern Nigeria. Academia Journal of Agricultural Research, 1(9), 172‑179.
VERNIER, P., N’ZUÉ, B., & ZAKHIA-ROZIS, N. (2018). Le manioc, entre culture alimentaire et filière agro-industrielle (Quæ, CTA, Presses agronomiques de Gembloux). éditions Quae. https://doi.org/10.35690/978-2-7592-2708-2
VYAKUNO, K. E. (2006). Pression anthropique et aménagement rationnel des hautes terres de Lubero en RDC. Rapport entre société et milieu physique dans une montagne équatoriale, Tome I [Thèse de doctorat]. Université de Toulouse II.
XIE, X., MACHIKOWA, T., & WONPRASAID, S. (2020). Fertigation based on a nutrient balance model for cassava production in two different textured soils. Plant Production Science, 23(4), 407‑416. https://doi.org/10.1080/1343943X.2020.1743189
ZHANG, Y., NIE, L., SUN, J., HONG, Y., YAN, H., LI, M., YOU, X., ZHU, L., & FANG, F. (2020). Impacts of environmental factors on pasting properties of cassava flour mediated by its macronutrients. Frontiers in Nutrition, 7. https://www.frontiersin.org/articles/10.3389/fnut.2020.598960
Publiée
Comment citer
Numéro
Rubrique
(c) Tous droits réservés Parcours et Initiatives : Revue interdisciplinaire du Graben (PIRIG) 2024

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .